If another role that depends on the *apache* role accidentally creates
an invalid configuration, it will be impossible to correct it by
subsequent invocations of its playbook. This is because the *apache*
role always tries to start the service, which will fail if the
configuration is invalid, thus aborting the playbook. With this early
abort, there is no way for later tasks to correct the error.
Playbooks that include the *apache* role should have a task that is
executed after all the roles have been applied to ensure the service is
running.
The *dch-storage-net* role configures a machine to connect the storage
network and mount shared folders from the storage appliance.
The `wait-global-address.sh` script and corresponding
*wait-global-address@.service* systemd unit template are necessary to
ensure that the storage network is actually available before attempting
to mount the shared volumes. This is particularly important at boot,
since `dhcpcd` does not implement any kind of signaling that can be used
by *network-online.target*, so the network is considered "online" as
soon as the `dhcpcd` process has started. This typically results in
"network unreachable" errors.
The *net-ifaces* role manages a script that creates virtual network
interfaces, such as bridge, bond, and VLAN, that `dhcpcd`/`dhclient`
alone cannot. This provides a lightweight alternative to
*systemd-networkd* and *NetworkMangager*.
Though the default for the `fqdn` value is listed as `both` in
*dhcpcd.conf(5)*, the current behavior of `dhcpcd` suggests that it may
actually be `none`. Without explicitly setting `fqdn both`, the value of
the kernel node name is sent as-is in the *hostname* option (12). If the
node name is set to the FQDN, then dynamic DNS gets broken, since the
DHCP server always appends its domain name to the provided hostname.
Setting `fqdn both` causes `dhcpcd` to send the FQDN in the *FQDN*
option (81), which the DHCP server interprets correctly.
Using a list to specify the values for the `allowinterfaces` and
`denyinterfaces` parameters in `dhcpcd.conf` makes the configuration
policy cleaner and more type-safe.
Today I realized that `dhcpcd` has been logging several hundred thousand
of these messages every second:
libudev: received NULL device
This was causing both `dhcpcd` and `systemd-journald` to consume 100%
CPU.
I am not entirely sure what a "device management" module is in the
context of `dhcpcd`, but it does not seem to be required. Setting the
`nodev` option in `dhcpcd.conf` suppresses the messages, and seems to
have no effect on the operation of the daemon.
Traffic from the management network is not allowed except for specific
services. NTP is required of course, for time synchronization with the
pyrocufflink.blue domain controllers. RADIUS is necessary for WiFi
authentication, which is also handled by the DCs.
The `ifconfig` global directive specifies the IP address added to the
tunnel interface device, not the network. The `push route` directives
need to include this address to correctly send route information to
clients.
The *dch-openvpn-server* role installs and configures OpenVPN and
stunnel to provide both native OpenVPN service as well as
OpenVPN-over-TLS. The latter uses stunnel, listening on TCP port 9876,
to allow better firewall traversal and TCP port sharing via reverse
proxy.
The `apache_server_tokens` variable can now be set, which controls the
value of the `ServerTokens` directive. If the variable is set, the
`ServerTokens` directive will be added to the `00-servername.conf` file.
The `samba_interfaces` variable can now be defined to populate the
`interfaces` global configuration parameter in `smb.conf`. This
parameter controls the interfaces or addresses to which the Samba server
binds, and also the IP addresses that are registered in DNS.
The *certbot* role now supports copying the data for an existing Let's
Encrypt account to the managed node using an archive. If an archive
named for the inventory hostname (typically the FQDN) of the managed
node is found in the `accounts` directory under the `files` directory of
the *certbot* role, it will be copied to the managed node and extracted
at `/var/lib/letsencrypt/accounts`. This takes the place of running
`certbot register` to sign up for a new account.
The *install* tag is applied to any task that installs a package.
The *user* tag is applied to any task that creates an OS user or group.
The *group* tag is applied to any task that creates an OS user group.
For machines that do not use firewalld, the *zabbix-agent* role will now
skip attempting to open the Zabbix agent port using the `firewalld`
module. The `host_uses_firewalld` variable controls this behavior.
The *certbot* role installs and configures the `certbot` ACME client. It
adjusts the default configuration to allow the tool to run as an
unprivileged user, and then configures Apache to work with the *webroot*
plugin. It registers for an account and requests a certificate for the
domains specified by the `certbot_domains` Ansible variable. Finally, it
enables the *certbot-renew.timer* systemd unit to schedule automatic
renewal of all Let's Encrypt certificates.
The *dch-proxy* role sets up HAProxy to provide a revers proxy for all
public-facing web services on the Pyrocufflink network. It uses the TLS
Server Name Indication (SNI) extension to determine the proper backend
server based on the name requested by the client.
For now, only Gitea is configured; the name *git.pyrocufflink.blue* is
proxied to *git0.pyrocufflink.blue*. All other names are proxied to
Myala.
The *haproxy* installs HAproxy and sets up basic configuration for it.
It configures the systemd unit to launch the service with the `-f
/etc/haproxy` arguments, which will cause it to load all files from the
`/etc/haproxy` directory, instead of just `/etc/haproxy/haproxy.cfg`.
This will allow other roles to add frontend and backend configuration by
adding additional files to this directory.
The *sshd* role can be used to configure the OpenSSH daemon. It supports
configuring a few options globally, as well as a limited set of options
in `Match` blocks (e.g. per-user/group configuration).
The `trustca` role can be used to add CA certificates to the system
trust store. It requires a variable, `ca`, to be defined, referring to
the name of a file containing a CA certificate to install.
The `gitea_ssh_domain` and `gitea_http_domain` variables can be used to
configure the host portion of the URLs for cloning Git repositories over
SSH and HTTPS, respectively. By default, both values are the FQDN of the
machine hosting Gitea.
The *gitea* role installs Gitea using the system package manager and
configures Apache as a reverse proxy for it.
The configuration file requires a number of "secret" values that need to
be unique. These must be specified as Ansible variables:
* `gitea_internal_token`
* `gitea_secret_key`
* `gitea_lfs_jwt_secret`
The `gitea generate` command can be used to create these values.
Normally, Gitea expects to run its own setup tool to generate the
configuration file and create the administrative user. Since the
configuration file is generated from the template instead, no
administrative user is created automatically. Luckily, the `gitea`
command includes a tool to create users, so the administrator can be
created manually, e.g.:
sudo -u gitea gitea admin create-user -c /etc/gitea/app.ini \
--admin
--name giteadmin \
--password giteadmin \
--email giteadmin@example.org
In order to enable LDAPS/STARTTLS support in Samba, the `tls enabled`
option must be set to `yes` and the `tls keyfile` and `tls certfile`
options must be set to the path of the private key and certificate
files, respectively, that Samba will use. The `samba_tls_enabled`,
`samba_tls_keyfile`, and `samb_tls_certfile` Ansible variables can be
used to control these values.
The `socket options` directive does not need to be specified in
`smb.conf`. I think I copied it from an example many years ago, and
never bothered to remove it. It is definitely not required, most likely
not helping performance at all, and most likely hindering it.
This commit adjusts the firewall and networking configuration on dc0 to
host the Pyrocufflink remote access IPsec VPN locally instead of
forwarding it to the internal VPN server.
The *dch-vpn-server* role configures strongSwan to act as an IPsec
responder for `vpn.pyrocufflink.net` and provide an IKEv2/IPsec VPN for
remote access clients, as well as the reverse VPN to FireMon.
The *strongwan* role is intended to be used as a dependency of other
roles that use strongSwan for IPsec configuration. It deploys some basic
configuration and configures the *strongswan* service, but does not
configure any connections, secrets, etc.
Using `state=absent` with the `file` module in a `with_items` loop to
delete the "default" module and site configuration files and the example
certificates is incredibly slow. Especially on the Raspberry Pi, it can
take several minutes to apply this role, even when there are no changes
to make. Using the `command` module and running `rm` to remove these
files, while not as idempotent, is significantly faster. The main
drawback is that each item in the list is not checked, so new items to
remove have to be added to the end of the list instead of in
alphabetical order.
The *freeradius* role is used to install and configure FreeRADIUS. The
configuration system for it is extremely complicated, with dozens of
files in several directories. The default configuration has a plethora
of options enabled that are not needed in most cases, so they are
disabled here. Since the initial (and perhaps only) use case I have for
RADIUS is WiFi authentication via certificates, only the EAP-TLS
mechanism is enabled currently.