The `koji.yml` playbook can be used to deploy an entire Koji ecosystem.
It is composed of three smaller playbooks:
* `koji-hub.yml`: Deploys the Koji hub, GC, and Kojira
* `koji-web.yml`: Deploys the Koji Web GUI
* `koji-builder.yml`: Deploys the Koji builder
The *koji-web* role installs and configures the Koji Web GUI front-end
for Koji. It requires Apache and mod_wsgi. A client certificate is
required for authentication to the hub, and must be placed in the
host-specific subdirectory of `certs/koji`.
The *koji-client* role is a generic role that can be used to configure
the Koji client library/`koji` CLI tool. By default, it manages the
default configuration at `/etc/koji`, but by using the
`koji_client_dir`, `koji_client_user`, and `koji_client_id` variables,
it can be used to configure per-user client configuration as well.
The *kojira* role sets up the Koji repository agent to manage
repository metadata for build tags. It runs as a daemon, usually on the
same machine as the Koji hub. A client certificate is required for
authentication, and must be supplied by placing it in the
`certs/koji/{{ inventory_hostname }}` directory.
The *koji-gc* role sets up the Koji garbage collector utility to run
periodically. It uses cron for scheduling. A client certificate is
required for authentication, and must be supplied by placing it in the
`certs/koji/{{ inventory_hostname }}` directory.
The minimal Fedora installation does not include a cron implementation.
The *cronie* role can be applied to hosts installed in this way to
ensure that cron is available for task scheduling.
The `burp-client.yml` and `burp-server.yml` playbooks apply the
*burp-client* and *burp-server* roles to BURP clients and servers,
respectively. The server playbook also applies the *postfix* role to
ensure that SMTP is configured and backup notifications can be sent.
The *burp-client* role installs and configures a BURP client. It should
support RHEL/CentOS/Fedora and Gentoo.
To manage the client password and other server-mandated configuration,
the role uses Ansible's delegation feature to generate a configuration
file in the "clientconfdir" on the BURP server.
An hourly cron task is scheduled that runs `burp -a t` every hour. This
allows the server to configure backup timebands and intervals.
The *burp-server* role installs and configures a BURP server. It is
adapted from a previous iteration, and should support CentOS/RHEL/Fedora
and Gentoo, as well as both BURP 1.x and 2.x (depending on which version
gets installed by the system package manager).
To manage the certificate authority, the *burp-server* role uses the
`burp_ca` command. This has the advantage of not requiring any external
certificate management, but effectively binds the CA to a specific
machine.
The value of the `shlib_directory` is dependent the system architecture.
Specifically, x86_64 machines use `/usr/lib64/postfix`, while everything
else uses `/usr/lib/postfix`. This role was originally deployed on a
Raspberry Pi, so the original path was correct. Attempting to deploy it
on an x86_64 machine revealed the error.
This commit adds a new task that loads a variables file based on the
architecture. Each option defines an `arch_libdir` variable, which can
be expanded in the `postfix_shlib_directory` variable as needed.
Because *vmhost1.pyrocufflink.blue* is usually sleeping, continuous
enforcement jobs always fail. By keeping it in a separate inventory
file, configuration policy can still be applied to it manually, but it
will be ignored by continuous enforcement.
*myala.pyrocufflink.jazz* no longer hosts any public-facing websites,
and is in fact shut down. To prevent HAproxy from failing to start
because it cannot resolve the name, this backend needs to be removed.
Usually, the *samba* role is deployed as a dependency of the *winbind*
role, which explicitly sets `samba_security` to `ads`. The new
*fileserver* role also depends on the *samba* role, but it does NOT sett
that variable. This can cause `smb.conf` to be rewritten with a
different value whenever one or the other role is applied.
Explicitly setting the `samba_security` variable at the group level
ensures that the value is consistent no matter how the *samba* role is
applied. Since all domain member machines need the same value,
regardless of what function they perform, this is safe.
The *fileserver* role configures Samba as a file sharing server. It uses
the *samba* role to handle cross-distribution installation of Samba
itself, and is focused primarily on configuring shared folders.
This commit adds an *after* ordering dependency on the network device
unit to the *wait-global-address@.service* template unit. Without this
dependency, the service will wait forever for a global address if the
device does not exist. With the dependency, though, if the device does
not appear within the default timeout, the wait service will never
start, causing all dependent services to fail, but allowing the boot
process to continue.
The *websites/darkchestofwonders.us* role prepares a machine to host
http://darkchestofwonders.us/. The website itself is published via rsync
by Jenkins.
The *websites/dustin.hatch.name* role configures a server to host
http://dustin.hatch.name/. The role only applies basic configuration;
the actual website application is published by Jenkins.
The Apache service needs to be reloaded after the *certbot* role
configures it to serve the `/.well-known/acme-challenge` path, so that
the changes can take effect before the `certbot` command is run to
request the certificate(s).
If another role that depends on the *apache* role accidentally creates
an invalid configuration, it will be impossible to correct it by
subsequent invocations of its playbook. This is because the *apache*
role always tries to start the service, which will fail if the
configuration is invalid, thus aborting the playbook. With this early
abort, there is no way for later tasks to correct the error.
Playbooks that include the *apache* role should have a task that is
executed after all the roles have been applied to ensure the service is
running.
The *dch-storage-net* role configures a machine to connect the storage
network and mount shared folders from the storage appliance.
The `wait-global-address.sh` script and corresponding
*wait-global-address@.service* systemd unit template are necessary to
ensure that the storage network is actually available before attempting
to mount the shared volumes. This is particularly important at boot,
since `dhcpcd` does not implement any kind of signaling that can be used
by *network-online.target*, so the network is considered "online" as
soon as the `dhcpcd` process has started. This typically results in
"network unreachable" errors.
The *net-ifaces* role manages a script that creates virtual network
interfaces, such as bridge, bond, and VLAN, that `dhcpcd`/`dhclient`
alone cannot. This provides a lightweight alternative to
*systemd-networkd* and *NetworkMangager*.
Though the default for the `fqdn` value is listed as `both` in
*dhcpcd.conf(5)*, the current behavior of `dhcpcd` suggests that it may
actually be `none`. Without explicitly setting `fqdn both`, the value of
the kernel node name is sent as-is in the *hostname* option (12). If the
node name is set to the FQDN, then dynamic DNS gets broken, since the
DHCP server always appends its domain name to the provided hostname.
Setting `fqdn both` causes `dhcpcd` to send the FQDN in the *FQDN*
option (81), which the DHCP server interprets correctly.